skip to main content


Search for: All records

Creators/Authors contains: "Tsige, Mesfin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity. 
    more » « less
    Free, publicly-accessible full text available November 13, 2024
  2. Free, publicly-accessible full text available May 23, 2024
  3. Macroionic solutions behave quite differently from small ions in solution or colloids in suspension, representing a previously missing and very important transitional stage, and can further be connected to solutions of polyelectrolytes, including proteins and DNA ( e.g. , similarities between “blackberry” formation and virus capsid formation). While synthesis and characterization have produced an immense database regarding the self-assembly behavior of macroions in solution resulting in many empirical rules and guidelines, theory and simulations are sorely needed to connect these disparate threads into a cohesive and coherent narrative of macroionic solution theory and to provide guidance for future work. We recently developed a versatile coarse-grained model specifically designed for modelling the self-assembly of macroions in solution and have answered some of the most outstanding questions about the solution behavior of macroions including the source of the attractive force between like-charged macroions and how they self-assemble into a 2D monolayer structure. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. The solvation shell structures of Ca 2+ in aqueous and organic solutions probed by calcium L-edge soft X-ray absorption spectroscopy (XAS) and DFT/MD simulations show the coordination number of Ca 2+ to be negatively correlated with the electrolyte concentration and the steric hindrance of the solvent molecule. In this work, the calcium L-edge soft XAS demonstrates its sensitivity to the surrounding chemical environment. Additionally, the total electron yield (TEY) mode is surface sensitive because the electron penetration depth is limited to a few nanometers. Thus this study shows its implications for future battery studies, especially for probing the electrolyte/electrode interface for electrochemical reactions under in situ /operando conditions. 
    more » « less